Application Problems 2

1. The number of bacteria in a refrigerated food is given by $n(t)=30 t^{2}-20 t+160$ where " t " is the temperature of the food in Celsius. At what temperature will the number of bacteria be minimal?

$$
\frac{4 a c-b^{2}}{4 a}=\frac{4(30)(160)-(-20)^{2}}{4(30)}=\frac{470}{3}=156.66
$$

2. The height " h " in feet of an object above the ground is given by $h(t)=-16 t^{2}+64 t+220$ where " t " is the time in seconds. Find the maximum height of the object and at what time it reaches the maximum height.
$\frac{4 a c-b^{2}}{4 a}=\frac{4(-16)(220)-(64)^{2}}{4(-16)}=284$
3. Patti hits a golf ball of the tee. The height of the ball is given by
$y(x)=-16 x^{2}+4300 x+3650$ where " y " is the height in yards above the ground and " x " is the horizontal distance from the tee in yards. What is the maximum height of the ball?
$\frac{4 a c-b^{2}}{4 a}=\frac{4(-16)(3650)-(4300)^{2}}{4(-16)}=\frac{1170225}{4}=292556.25$
4. The number of board feet in a 16 foot long tree is approximated by the model
$F(d)=0.8 d^{2}-1.4 d-9.6$ where " F " is the number of feet and " d " is the diameter of the \log. How many board feet are in a log with diameter 12 inches?
$F(d)=0.8 d^{2}-1.4 d-9.6$
$F(d)=0.8(12)^{2}-1.4(12)-9.6$
$F(d)=\frac{444}{5}=88.8$
What is the diameter that will produce the minimum number of board feet?
$\frac{-b}{2 a}=\frac{-(-1.4)}{2(.8)}=\frac{1.4}{1.6}=0.875$
5. For the years of 1986 to 1998 , the number of mountain bike owners " m " (in thousands) in Canada can be approximated by the model where $m(t)=0.35 t^{2}-2.36 t+4.24$. In what year was the number of mountain bike owners at a minimum?
$\frac{-b}{2 a}=\frac{-(-2.36)}{2(.35)}=\frac{118}{35}=3.371=3$ rd year
$1986+3=1989$
6. A manufacturer of tennis balls has a daily cost of $C(x)=240-15 x+0.01 x^{2}$ where " C " is the total cost in dollars and " x " is the number of tennis balls produced. What number of tennis balls will produce the minimum?
$\frac{-b}{2 a}=\frac{-(-15)}{2(.01)}=\frac{15}{.02}=750$
7. The value of Ahmed's stock portfolio is given by the function $v(t)=70+85 t-3 t^{2}$ where " v " is the value of the portfolio in hundreds of dollars and " t " is the time in
months. When will the value of Ahmed's portfolio be at a maximum?
$\frac{-b}{2 a}=\frac{-(8.5)}{2(-3)}=\frac{8.5}{6}=1.4167$
8. The value of Kim's stock portfolio is given by the function $v(t)=60+80 t+3 t^{2}$ where " v " is the value of the portfolio in hundreds of dollars and " t " is the time in months. How much money did Jon start with?
60
What is the minimum value of Jon's portfolio?
$\frac{4 a c-b^{2}}{4 a}=\frac{4(3)(60)-(80)^{2}}{4(3)}=\frac{-1420}{3}=-473.33$
9. Find the number of units that produce the maximum revenue, where $R(x)=860-0.2 x^{2}$ is the total revenue (in dollars) and " x " is the number of units sold.

$$
\frac{-b}{2 a}=\frac{-(0)}{2(-.2)}=0
$$

10. A textile manufacturer has daily production costs of $C(x)=9,000-100 x+0.06 x^{2}$, where " C " is the total cost (in dollars) and " x " is the number of units produced. How many units should be produced each day to yield a minimum cost?
$\frac{-b}{2 a}=\frac{-(-100)}{2(.06)}=\frac{100}{.12}=\frac{2500}{3}=333.33$
11. A manufacturer of light fixtures has daily production costs of $C(x)=900-8 x+0.3 x^{2}$ where " C " is the total cost (in dollars) and " x " is the number of units produced. How many units should be produced every day to yield a minimum cost? $\frac{-b}{2 a}=\frac{-(-8)}{2(.3)}=\frac{8}{.6}=\frac{80}{6}=13.33$
12. The height " h " in feet of a projectile launched vertically upward from the top of a 96foot tall bridge is given by $h(t)=110+16 t-16 t^{2}$ where " t " is time in seconds. What is the maximum height and how long will it take the projectile to strike the ground?

$$
\begin{aligned}
& \frac{4 a c-b^{2}}{4 a}=\frac{4(-16)(110)-(16)^{2}}{4(-16)}=114 \\
& -\frac{b}{2 a}=\frac{-(16)}{2(-16)}=\frac{1}{2} \text { time to reach max height } \\
& \text { let } t=3 \Rightarrow h(t)=110+16(3)-16(3)^{2} \Rightarrow 14 \\
& \text { let } t=4 \Rightarrow h(t)=110+16(4)-16(4)^{2} \Rightarrow-82
\end{aligned}
$$

\therefore the projectile strikes the ground between 3 and 4 seconds because a positive $h(t)$ indicates being above the ground and a negative $h(t)$ value indicates that the object is below the ground which is not possible.

